OpenAI 恰逢生成 AI 領(lǐng)域格局劇變之際。中國的 DeepSeek 近期通過開源其 DeepSeek-R1 模型(基于 MIT 許可),顛覆了西方 AI 開發(fā)依賴封閉訂閱的商業(yè)模式。這種開放策略與 OpenAI 的分層收費(fèi)形成對(duì)比。DeepSeek 的做法旨在讓技術(shù)自由傳播,促進(jìn)廣泛應(yīng)用,而 OpenAI 則通過訂閱體系維持高端功能排他性。困惑已將 DeepSeek-R1集成至其研究工具,遠(yuǎn)低于OpenAI,凸顯開源模式的對(duì)抗。另外,Anthropic的Claude 3.7 Sonnet則通過透明推理路徑(“可視擴(kuò)展思維”)尋求差異化。這三者的競(jìng)爭(zhēng)形式出現(xiàn)了媒介的市場(chǎng)格局,企業(yè)需權(quán)衡生態(tài)系統(tǒng)的即時(shí)優(yōu)勢(shì)與開源平臺(tái)的創(chuàng)新潛力。
OpenAI的分層訪問策略反映了其在盈利與任務(wù)之間的平衡。Sam Altman曾表示,深度研究對(duì)部分用戶價(jià)值每月1000美元,暗示對(duì)高價(jià)值用戶群體的定位。Plus用戶每月20美元獲10次查詢,Pro用戶每月200美元獲120次查詢,這種設(shè)計(jì)既保留了溢價(jià)價(jià)值,又通過“預(yù)約式”訪問(如免費(fèi)用戶每月2次)次)用戶更加廣泛。這種“免費(fèi)增值”模式在數(shù)字經(jīng)濟(jì)中常見,但嚴(yán)格的查詢限制體現(xiàn)了對(duì)計(jì)算成本的考量,意在避免資源獎(jiǎng)勵(lì),同時(shí)推動(dòng)用戶升級(jí)訂閱。
深度研究在“人類的最后考試”基準(zhǔn)測(cè)試中取得了 26.6% 的準(zhǔn)確率,遠(yuǎn)超 DeepSeek-R1 的 9.4% 等模型,顯示其在多領(lǐng)域推理和信息整合上的突破。其技術(shù)亮點(diǎn)包括多步規(guī)劃和公共衛(wèi)生檢索,能在研究中自我調(diào)整。然而,該系統(tǒng)依賴于公開 Web在快速變化或文獻(xiàn)稀缺的領(lǐng)域,其分析背景設(shè)定,無法訪問母數(shù)據(jù)庫,限制了專業(yè)應(yīng)用的全面性。
對(duì)于企業(yè)領(lǐng)導(dǎo)者來說,深度研究既是機(jī)遇也是挑戰(zhàn)。效率可將數(shù)小時(shí)的研究壓縮至數(shù)十,但需要人工監(jiān)督以確保可靠性。組織可能需要設(shè)計(jì)新角色,將人類專業(yè)知識(shí)聚焦于問題定義和結(jié)果驗(yàn)證,而不是簡(jiǎn)單替代初級(jí)分析師。每成本約1.67美元(專業(yè)級(jí)),遠(yuǎn)低于人力成本其其,但接下來企業(yè)優(yōu)先級(jí)分配使用場(chǎng)景。驅(qū)動(dòng)的研究范式。